计算∫∫xydydz+z^2dzdx+y^2dxdy其中∑为半球面z=√(4-x^2-y^2)的上侧

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/27 10:17:56
计算∫∫xydydz+z^2dzdx+y^2dxdy其中∑为半球面z=√(4-x^2-y^2)的上侧

计算∫∫xydydz+z^2dzdx+y^2dxdy其中∑为半球面z=√(4-x^2-y^2)的上侧
计算∫∫xydydz+z^2dzdx+y^2dxdy其中∑为半球面z=√(4-x^2-y^2)的上侧

计算∫∫xydydz+z^2dzdx+y^2dxdy其中∑为半球面z=√(4-x^2-y^2)的上侧
被平面Σ1:z=0,x²+y²≤4,下侧
则Σ与Σ1构成封闭曲面,用高斯公式
∫∫(Σ+Σ1) xydydz+z^2dzdx+y^2dxdy
=∫∫∫ (y+0+0)dxdydz
被积函数只剩下y,由于区域关于xoz面对称,y是奇函数,所以结果为0
综上,上面积分为0.
下面将补的Σ1减出去即可:
∫∫(Σ1) xydydz+z^2dzdx+y^2dxdy
=-∫∫ y² dxdy
用极坐标
=-∫∫ r³sin²θ drdθ
=-∫[0→2π]sin²θdθ∫[0→2] r³ dr
=-(1/2)∫[0→2π] (1-cos2θ) dθ∫[0→2] r³ dr
=-π(1/4)r^4 |[0→2]
=-4π
因此原积分=0-(-4π)=4π
希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,

计算∫∫xydydz+z^2dzdx+y^2dxdy其中∑为半球面z=√(4-x^2-y^2)的上侧 计算∫∫2xz^2dydz+y(z^2+1)dzdx+(2-z^3)dxdy,其中∑是曲面z=x2+y^2(0计算∫∫2xz^2dydz+y(z^2+1)dzdx+(2-z^3)dxdy,其中∑是曲面z=x^2+y^2(0 计算曲面积分I=∫∫∑xydydz+2sinxdxdy,其中∑是旋转抛物面z=x²+y²(0≤z≤1)的下侧求教 计算I=∫∫x(1+x^2z)dydz+y(1-x^2z)dzdx+z(1-x^2z)dxdy其中∑为曲面z=√x^2+y^2(0 计算曲面积分I=∫∫(x^3z+x+z)dydz-(x^2yz+x)dzdx-(x^2z^2+2z)dzdx,其中∑为曲面z=1-x^2-y^2(z≥0)上侧 关于曲面积分计算曲面积分∫∫(y^2+2z)dydz+(3z^2-x)dzdx+(x^2-y)dxdy,其中积分区域为锥面z=√x^2+y^2介于0 计算二重积分∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-y)dxdy 其中E 为锥面z=根号下(x^2+y^2) (0 计算∫∫ (2x+8z)dydz+(xy-xz)dzdx+(yz+2z)dxdy其中是由x^2+y^2=4及平面z=1,z=2所围成立体的表面,取内侧 计算曲面积分∫∫ 2x z^2 dydz + y(z^2+1) dzdx +9z3 dxdy其中曲面为z=x^2+y^2+1 (1 计算曲面积分 I=∫∫(S+) (x^3)dydz+(z)dzdx+(y)dxdy 其中s+为曲面x^2+y^2=4,与平面z=0,Z=1所围外侧 计算:I=∫∫(S+)x^3dydz+y^3dzdx+z^3dxdy,其中S+为椭球面x^2/a^2+y^2/b^2+z^2/c^2的外侧 计算∫∫(x^2+y^2)dzdx+zdxdy,其中∑是锥面z=√x^2+y^2被平面z=1所截下的在第一卦限的下侧 计算∫∫(x+y^2)dzdx+zdxdy,其中∑是锥面z=√x^2+y^2被平面z=1所截下的在第一卦限的下侧用普通方法,不要高斯. 计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,∑是上半球面z=根下1-x^2-y^2的上侧 曲面积分∫∫(2x+3z)dydz-x(x*z+y)dzdx+(y2+2z)dxdy的全表面的外侧 ∫∫x^2dydz+y^2dzdx+z^2dxdy,其中曲面为x^2+y^2+z^2=1的上半部分外侧 ∫∫zdxdy+xydydz 其中∑是柱面x^2+y^2=1被平面z=0及z=1所截得的在第一卦限内的前侧. 利用高斯公式的方法计算积分∫∫(x+y)dydz+(y+z)dzdx+(z+x)dxdy,其中∑是柱面x2+y2=a2介于0≤z≤1之间的部分外侧